Cohomogeneity one Alexandrov spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One

We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...

متن کامل

Differential Geometric Aspects of Alexandrov Spaces

We summarize the results on the differential geometric structure of Alexandrov spaces developed in [Otsu and Shioya 1994; Otsu 1995; Otsu and Tanoue a]. We discuss Riemannian and second differentiable structure and Jacobi fields on Alexandrov spaces of curvature bounded below or above.

متن کامل

Cohomogeneity One Actions on Some Noncompact Symmetric Spaces of Rank Two

We classify, up to orbit equivalence, the cohomogeneity one actions on the noncompact Riemannian symmetric spaces G2 /G2, SL3(C)/SU3 and SO 2,n+2/SO2SOn+2, n ≥ 1.

متن کامل

Quasigeodesics and Gradient Curves in Alexandrov Spaces

1. A comparison theorem for complete Riemannian manifolds with sectional curvatures ≥ k says that distance functions in such manifolds are more concave than in the model space Sk of constant curvature k. In other words, the restriction of any distance function distp to any geodesic γ (always parametrised by the arclength) satisfies a certain concavity condition (∗)k. For example, the condition ...

متن کامل

A Splitting Theorem for Alexandrov Spaces

A classical result of Toponogov [12] states that if a complete Riemannian manifold M with nonnegative sectional curvature contains a straight line, thenM is isometric to the metric product of a nonnegatively curved manifold and a line. We then know that the Busemann function associated with the straight line is an affine function, namely, a function which is affine on each unit speed geodesic i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2011

ISSN: 1083-4362,1531-586X

DOI: 10.1007/s00031-011-9122-0